

Drives with
PROFIBUS and
PROFINET
move the world

PROFIBUS & PROFINET – Drive technology

Presentation agenda

Introduction

Technologies

Applications

Technique

- Introduction to PROFIdrive
- Core aspects of PROFIdrive
- Mapping to PROFIBUS and PROFINET
- Device development and certification test
- Benefits for manufacturers and end users

No Automation without drive technology

Introduction

Technologies
Applications
Technique
Benefits

- Drive technology is a fundamental requirement for all automation tasks.
- The tasks performed and the related requirements are heavily dependent on the particular application.
- The range of applications includes ...
 - Motors with fixed and variable speed, such as pumps, fans and compressors, and drives for transport tasks
 - Single-axis positioning for applications, such as moving, resetting, and positioning
 - Applications with multi-axis interpolation for packaging, printing, and milling

Technologies for drive integration

Introduction

Technologies

Applications

Technique

Benefits

PI supplies comprehensive and harmonized base technologies

- PROFIBUS und PROFINET
 - Approved and innovative

- Vendor-neutral
- PROFIsafe
 - Safe
- PROFlenergy
 - Thrifty

Interoperability – Premise for good communication

5

Introduction

Technologies

Applications

Technique

- Modern drive products are usually equipped with a digital drive interface (fieldbus interface)
- Using PROFIBUS or PROFINET all drive functions on any drive are controllable
 - On / Off, rotational direction
 - Setting of speed, position, torque
 - Parametrization of drive functions
 - Diagnosis and supervision
- Communication can be realized in a flexible way
 - The protocol to control the device can be freely selected and fits best to the product
 - Simple retrofit of existing products
- Interoperability only to products of the same manufacturer
 - No manufacture independent Interoperability

How PROFIdrive came about

Introduction
Technologies
Applications
Technique
Benefits

- PROFIdrive is the standard profile for drive technology that relies on the PROFIBUS and PROFINET communication systems.
- It creates multiple benefits not only for the device and system manufacturers but also for integrators and end users.
 - 1991 Focus on variable speed drives exclusively on PROFIBUS.
 - 2002 New functionality of PROFIBUS
 - DPV1 acyclic services
 - DPV2 clock cycle synchronization
 - 2005 PROFINET mapping added
 - 2006 PROFIsafe integrated
 - 2007 PROFIdrive becomes international standard IEC 61800-7

Feld - Siemens AG / Introduction to PROFIdrive

Principles

Introduction

Technologies

Applications

Technique

Benefits

Concept of

- Integrating standard drive and "motion control" functionality with PLC sequencing logic.
- Distribution of Application processes across the devices
 - Motor-current control
 - Speed control
 - Position control
 - Path interpolation
 - Logic control

The communication system provides the link between the distributed processes, making use of dedicated services such as

- Cyclic IO
- Acyclic services
- Clock synchronization
- Profile-based Slave-to-Slave communication

Structure of the profile

Introduction

Technologies

Applications

Technique

Benefits

- The main part 1 of the profile describes those functions that are separate from the communication system.
 - Part 2 describes using of PROFIBUS
 - Part 3 describes using of PROFINET

- Scalable communication performance
- From a basic fieldbus to a system-wide Ethernet network
 - Same application view
 - Without any changes needing to be made to the automation system

PROFIdrive PROFIdrive Base Model PROFIdrive Parameter Model PROFIdrive Application Model

PROFIBUS
PROFIdrive
mapping on
PROFIBUS DP

PROFINET
PROFIdrive
mapping on
PROFINET IO

PROFIdrive base model

Introduction

Technologies

Applications

Technique

Feld - Siemens AG / Introduction to PROFIdrive

Communication Services

Introduction

Technologies

Applications

Technique

Benefits

Feld - Siemens AG / Introduction to PROFIdrive

Functional overview of "Drive object"

Introduction

Technologies

Applications

Technique

Feld - Siemens AG / Introduction to PROFIdrive

Device behavior - State machine

Introduction

Technologies

Applications

Technique

Feld - Siemens AG / Introduction to PROFIdrive

PROFIdrive Parameter Model

Introduction

Technologies

Applications

Technique

Benefits

Profile parameters

- Same parameters for all drives
- Drive identification
- Fault buffer
- Drive control
- Device identification
- Process data configuration
- List of all parameters

Manufacturer-specific parameters

- Complex devices can add up to well over 1000
- Provide manufacturers with maximum flexibility
- Manufacturer specific control and monitoring

■ Parameter access

- Acyclic access
- 256 axes per drive can be accessed
- Up to 65.535 parameters per axis
- Up to 65.535 array elements per parameter
- Value, descriptions and associated text elements

PROFIdrive Base mode parameter access

Introduction

Technologies

Applications

Technique

Benefits

PAP: Parameter access point

Feld - Siemens AG / Introduction to PROFIdrive

Diagnosis

Introduction

Technologies

Applications

Technique

Benefits

Feld - Siemens AG / Introduction to PROFIdrive

Diagnosis

Introduction

Technologies

Applications

Technique

Feld - Siemens AG / Introduction to PROFIdrive

No Automation without drive technology

Introduction
Technologies
Applications
Technique
Benefits

- Drive technology is a fundamental requirement for all automation tasks.
- The tasks performed and the related requirements are heavily dependent on the particular application.
- The range of applications includes ...
 - Motors with fixed and variable speed, such as pumps, fans and compressors, and drives for transport tasks
 - Single-axis positioning for applications, such as moving, resetting, and positioning
 - Applications with multi-axis interpolation for packaging, printing, and milling

Application Classes

Introduction

Technologies

Applications

Technique

- Standard drive (Class 1)
- Standard drive with technological function (Class 2)
- Positioning drive (Class 3)
- Central motion control (Classes 4 and 5)
- Decentralized automation with synchronized processes and electronic shafts (Class 6)

Standard drive (Class 1)

Introduction

Technologies

Applications

Technique

Benefits

Feld - Siemens AG / Introduction to PROFIdrive

Standard drive with distributed technology (Class 2)

Introduction

Technologies

Applications

Technique

Feld - Siemens AG / Introduction to PROFIdrive

Positioning drive (Class 3)

Introduction

Technologies

Applications

Technique

Benefits

PROFIdrive application class 3

Feld - Siemens AG / Introduction to PROFIdrive

Isochronous mode for what?

Introduction

Technologies

Applications

Technique

Benefits

... Isochronous mode assures a bus cycle with 1 µs accuracy

All drive application processes are synchronized to the bus cycle ...

Feld - Siemens AG / Introduction to PROFIdrive

Example of a maschine using isochronous drives

Introduction

Technologies

Applications

Technique

Benefits

Distributed automation system based on isochronous applications:

- Cam dis
- Electronic gear box
- Flying saw

Feld - Siemens AG / Introduction to PROFIdrive

Central motion control (Class 4 and 5)

Introduction

Technologies

Applications

Technique

Benefits

*) Closed Loop Speed Control operates clock synchronous to PLC application

PROFIdrive application class 4 and 5

Standard drive with distributed technology (Class 6)

Introduction

Technologies

Applications

Technique

Feld - Siemens AG / Introduction to PROFIdrive

Telegram for Standard drive (Class 1)

Introduction

Technologies

Applications

Technique

Benefits

Standard Telegram 1:

PZD number	1	2
Setpoint	STW1	NSOLL_A

PZD number	1	2
Actual value	ZSW1	NIST_A

Standard Telegram 2:

PZD number	1	2	3	4
Setpoint	STW1	NSOLI	_B	STW2

PZD number	1	2	3	4
Actual value	ZSW1	NIST	В	ZSW2

29

Standard telegram for Central motion control (Class 4 and 5)

Introduction Technologies **Applications** Technique **Benefits**

Standard telegram 3: n set interface, 32 bit, with one sensor

PZD number	1	2	3	4	5
Setpoint	STW1	NSOLI	_B	STW2	G1_STW

PZD number	1	2	3	4	5	6	7	8	9
Actual value	ZSW1	NIST_B		ZSW2	G1_ZSW	G1_XIST1		G1_XIS	T2

Standard telegram 4: n set interface, 32 bit, with two sensors

PZD number	1	2	3	4	5	6
Setpoint	STW1	NSOLI	B	STW2	G1_STW	G2_STW

PZD number	1	2	3	4	5	6	7	8	9
Actual value	ZSW1	NIST_B		ZSW2	G1_ZSW	G1_XIST1		G1_XIS	T2

10	11	12	13	14
G2_ZSW	G2_XIST	1	G2_XIS	T2

Mapping to communication systems

Introduction

Technologies

Applications

Technique

Feld - Siemens AG / Introduction to PROFIdrive

Integration of PROFIsafe

Introduction

Technologies

Applications

Technique

Feld - Siemens AG / Introduction to PROFIdrive

Conformity and certification

Introduction
Technologies
Applications

Technique

Benefits

■PROFIdrive Conformity test

- The products (test samples) undergo automated testing based on script descriptions
- Test steps are recorded automatically in the product test log
- Quality system and accreditation procedures ensure a consistent level of test quality

Benefits...

Introduction
Technologies
Applications
Technique

Benefits

...for device and system manufacturers

- Cost-effective thanks to only one communication technology for drives, control, I/O, and B&B
- Highly flexible thanks to integrated technology for the entire drive spectrum
- Functional security thanks to independent certification
- International acceptance thanks to IEC standardization and recommendation by enduser organizations such as OMAC
- Fit for the future on the basis of PROFIBUS and PROFINET

...integrators and end users

- Cost-effective thanks to a single bus technology, reduced training requirement and high impact
- Reduction in costs thanks to lower installation overheads and system-wide application programs
- Flexibility in terms of the adaptation of drive equipment
- User-friendly thanks to the interoperability and interchangeability of devices built by different manufacturers
- Investment security thanks to IEC standardization

Fit for the future thanks to the position of PROFIBUS and PROFINET as market leaders

